Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo.

نویسندگان

  • Kyeong-Rok Choi
  • Marco Berrera
  • Markus Reischl
  • Siegfried Strack
  • Marina Albrizio
  • Ira V Röder
  • Anika Wagner
  • Yvonne Petersen
  • Mathias Hafner
  • Manuela Zaccolo
  • Rüdiger Rudolf
چکیده

The stabilisation of acetylcholine receptors (AChRs) at the neuromuscular junction depends on muscle activity and the cooperative action of myosin Va and protein kinase A (PKA) type I. To execute its function, PKA has to be present in a subsynaptic microdomain where it is enriched by anchoring proteins. Here, we show that the AChR-associated protein, rapsyn, interacts with PKA type I in C2C12 and T-REx293 cells as well as in live mouse muscle beneath the neuromuscular junction. Molecular modelling, immunoprecipitation and bimolecular fluorescence complementation approaches identify an α-helical stretch of rapsyn to be crucial for binding to the dimerisation and docking domain of PKA type I. When expressed in live mouse muscle, a peptide encompassing the rapsyn α-helical sequence efficiently delocalises PKA type I from the neuromuscular junction. The same peptide, as well as a rapsyn construct lacking the α-helical domain, induces severe alteration of acetylcholine receptor turnover as well as fragmentation of synapses. This shows that rapsyn anchors PKA type I in close proximity to the postsynaptic membrane and suggests that this function is essential for synapse maintenance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetylcholine receptors direct rapsyn clusters to the neuromuscular synapse in zebrafish.

Clustering of nicotinic muscle acetylcholine receptors (AChRs) requires association with intracellular rapsyn, a protein with an intrinsic ability to self-cluster. Previous studies on sofa potato (sop), an AChR null line of zebrafish, have suggested that AChRs may play an active role in subsynaptic localization of rapsyn clusters. To test this proposal directly, we identified and cloned the gen...

متن کامل

Agrin regulates rapsyn interaction with surface acetylcholine receptors, and this underlies cytoskeletal anchoring and clustering.

The acetylcholine receptor (AChR)-associated protein rapsyn is essential for neuromuscular synapse formation and clustering of AChRs, but its mode of action remains unclear. We have investigated whether agrin, a key nerve-derived synaptogenic factor, influences rapsyn-AChR interactions and how this affects clustering and cytoskeletal linkage of AChRs. By precipitating AChRs and probing for asso...

متن کامل

Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding.

The receptor-associated protein of the synapse (rapsyn) is required for anchoring and stabilizing the nicotinic acetylcholine receptor (AChR) in the postsynaptic membrane of the neuromuscular junction (NMJ) during development. Here we studied the role of rapsyn in the maintenance of the adult NMJ by reducing rapsyn expression levels with short hairpin RNA (shRNA). Silencing rapsyn led to the av...

متن کامل

Myosin Va cooperates with PKA RIalpha to mediate maintenance of the endplate in vivo.

Myosin V motor proteins facilitate recycling of synaptic receptors, including AMPA and acetylcholine receptors, in central and peripheral synapses, respectively. To shed light on the regulation of receptor recycling, we employed in vivo imaging of mouse neuromuscular synapses. We found that myosin Va cooperates with PKA on the postsynapse to maintain size and integrity of the synapse; this coop...

متن کامل

Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse.

Physiological analysis of two lines of paralytic mutant zebrafish, relaxed and sofa potato, reveals defects in distinct types of receptors in skeletal muscle. In sofa potato the paralysis results from failed synaptic transmission because of the absence of acetylcholine receptors, whereas relaxed mutants lack dihydropyridine receptor-mediated release of internal calcium in response to the muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2012